Hands-on experience in Python, LangChain, and LLM integration. Built AI + Web3 experimental projects during hackathons and fellowships. Exploring decentralized AI applications (Dev3Pack Fellow, BuidlGuidl member).
I'm a Generative AI Engineer with hands-on experience in Python, LangChain, and LLM integration. I build AI-driven applications that connect humans and machines more intuitively, from winning AI hackathons to crafting sophisticated LLM-based solutions. My journey also includes exploring decentralized AI applications through fellowships like Dev3Pack and BuidlGuidl, where I've developed experimental projects bridging AI and Web3 technologies. Certified in AI agent building and a proud graduate of the 10x Data Bootcamp.
Real-world code examples showcasing my AI development skills with LangChain, OpenAI, and modern Python frameworks.
from langchain.agents import initialize_agent
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.7)
agent = initialize_agent(
llm=llm,
tools=[],
verbose=True
)
result = agent.run(
"Summarize this article in 3 bullet points."
)
Building intelligent agents with LangChain for automated task completion.
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
embeddings = OpenAIEmbeddings()
texts = ["AI is transforming healthcare",
"Machine learning enables automation"]
vectorstore = FAISS.from_texts(
texts, embeddings
)
docs = vectorstore.similarity_search(
"healthcare technology", k=2
)
Implementing semantic search with vector databases for intelligent retrieval.
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vectorstore.as_retriever(),
return_source_documents=True
)
response = qa_chain(
"What are the benefits of AI in healthcare?"
)
Building RAG systems for context-aware AI responses with document retrieval.
from web3 import Web3
from langchain.tools import tool
@tool
def get_balance(address: str) -> str:
"""Get ETH balance for an address"""
w3 = Web3(Web3.HTTPProvider('infura_url'))
balance = w3.eth.get_balance(address)
return w3.from_wei(balance, 'ether')
agent = initialize_agent(
tools=[get_balance],
llm=OpenAI(temperature=0)
)
Integrating blockchain functionality with AI agents for decentralized applications.
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# Load and preprocess data
df = pd.read_csv('data.csv')
df = df.dropna()
# Feature engineering
X = df.drop('target', axis=1)
y = df['target']
# Train model
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
End-to-end data processing pipeline with machine learning model training.
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Query(BaseModel):
text: str
max_tokens: int = 100
@app.post("/generate")
async def generate_response(query: Query):
response = llm.generate(
prompt=query.text,
max_tokens=query.max_tokens
)
return {"response": response}
@app.get("/health")
async def health_check():
return {"status": "healthy"}
Building production-ready AI APIs with FastAPI for scalable deployments.
Python + SQL
AI Agent Building
IBM Certification
DeepLearning.AI
Blockchain Fundamentals
Responsible AI Practices
Click below to view or download my full Resume, powered by AuraJobs:
View ResumeI'm open to freelance, contract, or full-time roles in GenAI, NLP, or AI product engineering.
Email: mistyrain11@gmail.com
LinkedIn: /misty-waters
GitHub: /rainwaters11